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What Was Known Before

(1) Despite being a continuous numeric trait, BMI was traditionally “binned” into categories.

(2) The WHO “normal” interval is [18.5, 24.99]. Earlier research suggested that the relative hazard

rate for those with BMI’s in [25, 29.99] was no higher than that for those in the [18.5, 24.99] bin.

(3) The exponent of 2 on height in the BMI formula was chosen to maximize correlation with

body-fat level and minimize correlation with height, but not to best predict death.

Study Importance

By treating BMI as a continuous variable, unlike most existing papers which study BMI, this

paper derives two main results:

(1) Personalized optimal BMI’s for individuals, with mean value around 26 (which is in the [25,

29.99] range currently labeled “overweight”). For an individual, the “personalized optimal BMI”

is the BMI that, based on his or her covariates(race, smoking status, educational status, etc.), is

associated with the lowest relative risk of death. By personalizing the recommendations, advice

can be tailored to individuals.

(2) Instead of using “mass/height2”, as in the traditional formula for BMI, an exponent close to 1 on

height would give better risk-of-mortality predictions. The interesting possibility that the optimal

exponent, separately for men and women is 1.0, which would give the formula “mass/height,”

cannot be excluded.
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Abstract

• Objective: The objective is two-fold: (1) To estimate for each individual the BMI which

is associated with the lowest risk of death, and (2) to study variants of the BMI formula

to determine which gives the best predictions of death.

• Methods: Treating BMI=mass/height2 as a continuous variable and estimating its inter-

action effects with several other variables, the authors analyze the NIH-AARP study data

set of approximately 566,000 individuals and fit Cox proportional hazards models to the

survival times.

• Results: For each individual a “personalized optimal BMI,” the BMI for that individual

which, according to the model, is associated with the lowest risk of death, is estimated. The

average personalized optimal BMI is approximately 26, which is in the current “overweight”

category. In fact, mass/height is a better predictor of death on the data set than BMI

itself.

• Conclusions: The model suggests that an individual’s “optimal” BMI depends on his or

her features; “one-size-fits-all” recommendations may be not best.
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Introduction

Body-mass index, mass in kilograms divided by the square of height in meters, was created in

1832 by Belgian polymath Adolphe Quetelet, who wrote, “the weight increases as the square of

the height” [1]. Known at various times as the “Quetelet Index” [1], “index of weight relative to

stature,” “index of build,” and “weight-height index” [2], BMI was originally intended to model

human populations or to measure adiposity, not to predict mortality. The groundbreaking paper by

Keys et al. [2] promoted BMI over alternate measures such as weight/height, weight/height3, and

the percentage of average weight for a given height, age, and sex because BMI overall had a lower

correlation with height and a higher correlation with a sum of skin-fold thicknesses, a measure of

body fat. Indeed, it was Keys et al. [2] who coined the term “body-mass index.”

Standard American medical advice, which follows World Health Organization guidelines, cate-

gorizes BMI’s under 18.5 as underweight; those in the range [18.5, 24.99] as normal or of healthy

weight; those in [25, 29.99] as overweight; and those 30 and higher as obese [3]. (See [4] also.) This

paper suggests to the contrary that a BMI of 25 should not be considered overweight, but instead

close to optimal. That a BMI in [25, 29.99] might be no worse than one in the “normal” range was

also suggested by [5, 6, 7, 8, 9, 10, 11] and others.

Several people, e.g., mathematicians Nick Trefethen [12] of Oxford University and Keith Devlin

[13] of Stanford University, have questioned the value of BMI as a measure of health. For example,

Trefethen [14] criticized the current BMI formula and suggested using an exponent of 2.5 on height

instead [12], but with no evidence supporting the choice. Devlin [13] emphasized the fact that BMI

was designed as a measure of populations rather than a predictor of mortality.

In this paper human mortality is modeled as a function of various health-related characteristics

of individuals, one of which is BMI, which is treated as a continuous variable. By contrast, most

recent papers on BMI, e.g., [6, 7, 8, 9], “binned” BMI, treating it as an unordered categorical

variable, a notable exception being [10].
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Table 1: Variables used

Variable Name Units or Number of Levels

age at entry years
height meters
BMI kg/m2

race 7
education 8
smoking status 32
physical activity frequency 7
alcohol consumption 9
self-reported health status 6
marital status 6
diabetes status 2
chronic disease status 2

Chronic disease status is true if and only if the respondent currently had, or had previously been
diagnosed with, cancer, heart disease, renal disease, emphysema, or stroke.

Methods

Data Set

This paper uses the NIH-AARP data set [15] of approximately 566,000 members of the American

Association for Retired People (AARP) living in California, Louisiana, Florida, Atlanta, North

Carolina, New Jersey, Pennsylvania, and Detroit who responded to a diet and health survey in

1996-1997, when they were of age between 50 and 70, and whose status, living or dead, was

determined at least 12.9 years later, the last available follow-up date having been December 31,

2009. (The data set was obtained in response to a proposal to the NIH-AARP Diet and Health

Study governing committee, which provided anonymized data.)

At the end of the study, for each individual, either the date of his or her death or the fact that he

or she was alive at the end, was recorded. Approximately 111,800 respondents died by December

31, 2009. Participants completed a detailed survey by mail giving, among other variables, the

variables we used, which are given in Table 1.

Three and a half million people were sent surveys. There were 566,398 respondents. After

the data were cleaned by removing respondents with extreme values of height, weight, caloric
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Table 2: Data cleaning

Initial number of respondents: 566,398

Respondents removed because height not in [1.4m,2.1m] or weight not in [31.8kg,181.8kg]: 16,987

Respondents removed because daily caloric consumption not in [200,6000]: 3,180

Respondents removed because daily alcohol consumption exceeded 200g: 4,099

Respondents removed because BMI2 not in [15,50]: 1,455

Respondents removed because of having a chronic illness: 133,178

Final number of respondents (“participants”) remaining: 407,499

consumption, alcohol consumption, and BMI, 540,677 survey responses remained. (See Table 2

and the supplemental material.) Next, those respondents who reported currently having a chronic

disease (defined as any one of cancer, heart disease, renal disease, emphysema, or stroke) at the

time of the survey, were excluded, to avoid any issue of reverse causation, which further removed

133,178 respondents. (See the Discussion for a sensitivity analysis regarding the removal of the

chronically ill.) This left us with n = 407, 499 total respondents. Of these, 235,546 were men

(38,425 deaths, or 16.3%), and 171,953 were women (20,820 deaths, or 12.1%). Hereafter “men”

and “women” in the data refer to these two samples of non-chronically-ill men and women. Such

respondents are called “participants.”

Models

A series of Cox proportional hazards regression models were fit to the right-censored times until

death for men and women separately, using age as the underlying time variable. (See [16] and [17]

for a discussion of how to choose the time variable when fitting Cox proportional hazards models.)

The Cox proportional hazards model [18, 19, 20] is a standard way of estimating one’s relative

instantaneous risk of death, i.e., hazard rate, across individuals. Table 3 summarizes three of

the models that were fit. Four other models that were fit for comparison’s sake, namely, models

M0,M1,M4, and M5, are discussed in the supplemental material.

Let BMIα denote the formula “mass/heightα”, traditional BMI being BMI2.

Model M2 models the hazard function for participant i as hi(t) = h0(t) exp (Xi · βββ), where t

is the subject’s age in years, h0(t) is the (unknown and, for the purpose of using the Cox model,

6



Table 3: Summary of models

Model df LL (men) LL (women)

M2 All variables 74 -241.6 -138.7

M3 All interactions (α = 2.0) 145 -0.8 -0.2

M6 All interactions (α = optimal) 145 0.0 0.0

Here, the column “df” reports the model degrees of freedom, i.e., the number of predictors in the
model, and “LL” is the log-likelihood of the parameters of the model given the data, with M6 used
as the comparison model.

irrelevant) baseline hazard function, Xi is the vector of predictor variables for participant i corre-

sponding to the first 11 input variables listed in the “Data Set” section, and βββ is the vector, of the

same length as Xi, of unknown coefficients that must be estimated. In other words, the part of

the hazard rate that, among people of age t, depends on a person’s 11 covariates, is exp(Xi · βββ),

an exponential of the dot product of the vector of the values of that person’s 11 covariates with

the vector βββ of unknown coefficients to be found. Algorithms for fitting the Cox model find the

coefficient vector βββ so that the resulting predicted hazard rates hi(t), in aggregate over participants,

most accurately agree with the actual death rates. (Because some covariates are multidimensional,

βββ will have more than 11 entries.) The fit of the model to the data is measured by the natural

logarithm of its (partial) likelihood [18, chapter 4]. Higher values of log-likelihood imply a better

fit to the data. Increasing the log-likelihood by two or more units when increasing the number of

degrees of freedom by one is considered statistically significant.

Additionally, a cubic function of the input variable BMI2, rather than just a linear function,

was used, to allow the model to capture the well-known “J-shaped” relationship between BMI2

and mortality [10]. Thus, there are three model degrees of freedom associated with BMI2 in model

M2, and counting J − 1 model degrees of freedom for each categorical input variable with J levels,

and one degree of freedom for each continuous or binary input variable in the model, model M2

contains 74 model degrees of freedom. That is, βββ for this model has 74 components. The maximum

likelihood estimates of βββ for model M2, for both men and women, are available in the supplemental

material.

Model M3 includes all of the predictor variables in model M2, as well as the two-way interaction
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effects between all pairs of input variables, and quadratic terms for all variables except for diabetes

(which is binary). To fit such a model using the existing categorical variables would have resulted in

a huge number of parameters in the model—((7−1)× (32−1) = 186 variables, for example, for the

interaction between the 7-level input variable “physical activity frequency” and the 32-level input

variable “smoking”). To alleviate this problem, the authors “tied together” the parameters for

the interactions to reduce the number of resulting model degrees of freedom; see the supplemental

material for details. The effects of each of the seven categorical variables in model M2 (race,

education, smoking status, physical activity frequency, alcohol consumption, self-reported health

status, and marital status) were “tied together,” and two-way interaction effects between all pairs

were estimated.

Model M6 is the same as model M3, except that the exponent α on height in the denomi-

nator of the definition of BMIα is chosen (separately for men and women) to be the number in

{0.1, 0.2, 0.3, ..., 3.0} which maximizes the log-likelihood. See the “A Better BMI Formula” section.

Results

Personalized Optimal BMI

The value of BMI2 that minimizes one’s relative risk under model M3, holding all other variables

constant, is defined as his or her personalized optimal BMI2, or POB2. Hence one’s minimum

relative risk depends on the values of his or her other demographic and health-related variables

(such as race, education, smoking status, etc.). Since under model M3 the logarithm of one’s

relative risk hi(t) of death is a cubic function of his or her BMI2, it is simple to compute one’s

POB2 using differentiation and the quadratic formula. (For technical reasons, POB2 is not defined

for approximately 0.1% of the population. See the supplemental material for details.) A confidence

interval for one’s POB2, defined as the interval of values around the POB2 for which a hypothesis

test that the derivative of the relative risk curve at that BMI2 value was equal to zero was not

rejected, was also computed. See the supplemental material for details.

The authors plan to make a calculator for POB2’s and their associated confidence intervals
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Figure 1: Density estimates of the POB2’s for (non-chronically ill) men and women in the study.
The sample mean and standard deviation were 25.7 (1.51) among men (n = 235, 546), and 26.3
(1.54) among women (n = 171, 953). For comparison, note that the mean observed BMI values for
these groups are 27.2 (men) and 26.6 (women).

available on the web.

The mean POB2 for men is 25.7, whereas for women it is 26.3. The distributions of POB2

are shown in Figure 1. The standard deviation for an individual man’s POB2 is 1.51 and that for

an individual woman’s POB2 is 1.54. (By contrast, the average BMI2’s in the study for men and

women are, respectively, 27.2 and 26.6, with standard deviations of, respectively, 3.99 and 5.30.)

Approximately 60% of men’s and 44% of women’s POB2 confidence intervals did not contain the

mean POB2 value for their respective sex, indicating that a single recommended BMI2 value for

each sex may not be appropriate. Figure 2 shows histograms of the differences between participants’

BMI2’s and POB2’s.

To check the fit of model M3, both men and women were stratified into subsets based on their

POB2 and their observed BMI2, and then, in Figure 3, the death rate vs. observed BMI2 for

each subset was plotted. Each point represents about 4700 (men) or 3400 (women) participants.

Quadratic curves were drawn through each set of death rates corresponding to a POB2 group. The

figure illustrates that the lowest death rate does, indeed, occur for participants whose observed
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Figure 2: For each sex, the distribution of the difference between a participant’s BMI2 and his or
her POB2 is shown. By inspecting the absolute values of the differences, one finds that men are,
on average, 3.2 units away from their POB2’s, while women are, on average, 3.9 units away.

BMI2 is near their estimated POB2 (for example, the nadirs of the orange curves occur at larger

values of BMI2 than do those of the blue or red curves, for both sexes).

It is important to note that one’s POB2 is the minimum point of one’s relative risk curve

when only BMI2 (effectively, weight) is changed. Should one change one’s BMI2 by changing other

covariates (e.g., by exercising more), that person’s POB2 will also change. From Figure 3, one

sees that having a lower POB2, whatever one’s actual BMI2, generally gives an individual a lower

relative risk. To the extent that the model is causal, if at all, changing covariates other than BMI2

so as to lower one’s POB2 may be more important than adjusting one’s weight to match his or her

POB2.

A Better BMI Formula

Quetelet’s claim that “the weight increases as the square of the height” is supported by the data

set, in which the correlation between height and BMI is close to zero: it is −0.01 for men and −0.07

for women.

The goal of this section is a “BMI-like” formula that best predicts risk of mortality (rather

than one that best models human populations). Specifically, the authors investigated whether

using a different exponent α in the BMI formula could significantly improve the fit of an otherwise

identical model that uses BMI2. Naively, one might think that mass should grow as the cube of
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Figure 3: For each sex, the set of participants of that sex were divided into five groups based on
their POB2: lowest decile, 10th-30th percentile, 30th-70th percentile, 70th-90th percentile, and
top decile. Next, for each sex, each of these five groups was subdivided into 5, 10, 20, 10, and
5 subgroups based on the participants’ observed BMI2 (using unequal splits at the group level to
ensure equal subgroup sizes), and death rates within these subgroups were plotted. The nadirs of
the curves do, in fact, occur near the mean POB2 for each group.
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height, volumes being cubic in length, but such a conclusion incorrectly assumes that a six-foot

person is a scaled-up version of a four-foot person.

To find the best exponent α on height, first, a model, denoted M4, identical to M3 with the

exception that it omits the interaction effect between BMI2 and height, was fit. Then, for a grid of

30 values of α ∈ {0.1, 0.2, 0.3, ..., 2.9, 3.0}, model M4 was refit and the log-likelihood was recorded.

Figure 4 shows the relationship between α (the exponent) and the log-likelihood of the resulting

models. The optimal values of α for men and women were approximately 1.1 and 1.3, respectively,

and they increased the log-likelihood of the model over using the traditional BMI2 by 17.6 and

4.4 points, respectively, both of which are statistically significant margins (p < 10−8 for men, and

p < 0.01 for women). More precisely, for men, the log-likelihood is maximized at α = 1.1, with

a range of two units of log-likelihood (i.e., the confidence interval) extending from approximately

0.8 to 1.3. For women, the log-likelihood is maximized at approximately 1.3, with the range of two

units of log-likelihood extending from 1.0 to 1.7; see Figure 4. It seems surprising that the optimal

α is demonstrably less than 2. Note that α = 1.0 is within the confidence interval for both men

and women, which leads to the simple formula BMI1 = weight/height.

Dependence of POB on Height

Interestingly, the POB2 values for men and women are not independent of height. More specifically,

the optimal BMI2 for a given individual depends on the individual’s height, and the optimal BMI2

is higher for short people than for tall people (and the difference between optimal BMI2 values for

short and tall people is larger for men than for women).

When using α = 1.1 for men and α = 1.3 for women, however, the POBα (defined as the

BMIα associated with the lowest risk of death for a given individual) no longer depends on height

(p = 0.67 and p = 0.98 for men and women, respectively). Figure 5 illustrates the dependence,

among women, of one’s POB2 on her height, and the lack of such dependence when using POB1.3

instead.
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Figure 4: The relationship between the log-likelihood and the exponent of height in the BMI formula
for men and women. The dotted lines indicate the values of α where the maximum likelihood was
achieved for each sex, and the shaded regions of the curves indicate the set of values of α for which
the likelihood was within 2 units of the maximum (i.e., the shaded regions can be thought of as
confidence intervals for the optimal α values).
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Figure 5: Under model M3 (see the “Models” section), pictured on the left, the interaction effect
between BMI2 and height among women is significant, which means that a woman’s relative risk
curve as a function of her BMI2 has a different minimum depending on her height. Under model
M6 (see Section “A Better BMI Formula”), pictured on the right, by using BMI1.3 = mass/height
1.3, the interaction effect between BMI1.3 and height disappears, and a woman’s minimum relative
risk is a function solely of her BMI1.3, rather than her height as well. The five curves in each plot
correspond to the 2.5th, 25th, 50th, 75th, and 97.5th quantiles of women’s height.
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Discussion

Summary of Results

It was shown that treating BMI as a continuous variable and computing interaction effects between

variables leads to a better estimate of the relationship between BMI and mortality. This paper’s

first result was a definition of POB2 as the value of BMI2 associated, in the model, with the lowest

risk of death. The average POB2’s for men and women are in the “overweight” range. The second

result was that among all positive α’s, the BMIα’s which give the best predictions of mortality have

α approximately 1.1 for men and 1.3 for women. One could not exclude the interesting possibility

that the best α was 1.0 for both men and women, which would give rise to the simple formula

BMI1 = mass/height. That α = 2 is the optimal α for either sex was rejected. The third result

was that POB2 is not independent of height, but that when using α = 1.1 for men and α = 1.3 for

women, the POBα no longer depends on height.

Practical Value of the Results

In the presence of all the covariates and interactions between them, whether one uses an exponent

of 2 or the optimal exponent for one’s sex makes no statistically significant difference.

One policy-related question is “How much longer, on average, could one expect to live if he or she

changed his or her BMI2 from its current value to the nearer endpoint of the WHO-recommended

BMI2 interval of [18.5, 24.99], if it is not already in this interval?” Then, for comparison, “How much

longer, on average, could one expect to live by changing his or her BMI2 to the nearer endpoint

of his or her POB2 confidence interval, if it is not already in this interval?” In other words, would

it be beneficial, on average, to replace the current, WHO-recommended universal BMI2 interval of

[18.5, 24.99] by the personalized intervals computed with the model?

Because the data are observational, and no causal effects were estimated in the model, these

questions cannot be answered directly. Proving causality would require doing, e.g., a study based

on either traditional randomization, “Mendelian randomization” [21, 22], instrumental variables,

or propensity score matching. Instead, for each person, the estimated hazard rate (according to
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model M3) at his or her current BMI2 is compared to the estimated hazard rate of a person identical

to him or her with the exception that the second person’s BMI2 is either (1) equal to the nearer

endpoint of the [18.5, 24.99] interval (if it is outside the interval), or (2) equal to the nearer endpoint

of the first person’s POB2 confidence interval (if it is outside the interval). In both cases, if the

first person’s BMI2 lies within the interval, then the second person’s BMI2 is set equal to the first

person’s BMI2. Then, assuming a Gompertz model [23] for the baseline hazard rate with a log-

slope of 0.108 (men) or 0.115 (women), and a log-intercept of -12.1 (men) or -12.8 (women), where

both the log-slopes and log-intercepts were estimated from the data in this study, the difference in

mean residual life (using [24, equation (2.7)]) for each type of pair of individuals described above

is computed.

Over all hypothetical pairs of men in the study, the mean difference in mean residual life between

the man whose BMI2 was set to the nearer endpoint of the WHO interval and the man with BMI2

unchanged from the study is 4.6 months (σ = 10.6 months). When the second man in the pair had

a BMI2 set equal to the nearer endpoint of the POB2 interval of the first man, however, the mean

difference in mean residual life was 6.3 months (σ = 10.6 months).

For women, the corresponding means are 3.5 months (σ = 9.8 months) for the WHO interval

and 6.6 months (σ = 10.2 months) for the POB2 interval.

All averages here are over all participants for each sex. Note the large standard deviations for

both sexes.

The increased mean residual lifetimes (of roughly 2-3 months) estimated for men and women

whose BMI2 values were moved in accordance with the POB2 interval of their counterpart, rather

than the WHO interval, suggest that a recommended universal BMI2 is not optimal, and that it

could be beneficial (especially in light of the high standard deviations) to tailor one’s recommenda-

tion to individuals, for whom the differences could be much more pronounced, using a model such

as ours.
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Effect of Removing the Chronically Ill

The analysis was rerun without excluding the 133,178 chronically ill respondents, to see whether

their removal had a large effect on the results. Let “new POB2” refer to the POB2 calculated based

on the population including the 133,178 chronically ill and let “old POB2” refer to the original

POB2. Among the non-chronically ill, the correlation between the new POB2 and the old POB2

is 0.96 and the standard deviation of the difference is 0.61. The new POB2’s on average (over the

non-chronically ill) are 0.88 units higher than the old POB2’s.

The optimal exponent in the BMI formula, previously 1.1 (with a confidence interval of [0.8,1.3])

for men and 1.3 (with a confidence interval of [1.0,1.7]) for women, changes to 1.0 (with a confidence

interval of [0.8,1.1]) for men and 1.4 (with a confidence interval of [1.1,1.8]) for women.
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and Alejandro Schäffer for tremendous help revising drafts of this paper in order to present our

results more clearly.

References

[1] Eknoyan G (2008). Adolphe Quetelet (1796-1874)—the average man and indices of obesity.

Nephrol Dial Transplant 23:47-51. Also available at http://ndt.oxfordjournals.org/

content/23/1/47.full.pdf+html; accessed July 6, 2015.

[2] Keys A, Fidanza F, Karvonen M J, Kimura N, Taylor H L (1972). Indices of rela-

tive weight and obesity. J Chron Dis 25:329-343. Reprinted in 2014 Int J Epidemiol

43(3): 655-665. Also available from http://ije.oxfordjournals.org/content/43/3/

655.full.pdf+html; accessed July 6, 2015.

17



[3] Centers for Disease Control (2012). Defining overweight and obesity. Available from http:

//www.cdc.gov/obesity/adult/defining.html; accessed May 21, 2015.

[4] Berrington de Gonzalez A, Hartge P, Cerhan J, et al. (2010). Body-mass index and mor-

tality among 1.46 million white adults. N Engl J Med 363:2211-2219.

[5] Adams K, Schatzkin A, Harris T, et al. (2006). Overweight, obesity, and mortality in a

large prospective cohort of persons 50 to 71 years old. N Engl J Med 355:763-778.

[6] Flegal K, Kit B, Orpana H, Graubard B (2013). Association of all-cause mortality with

overweight and obesity using standard body-mass index categories: a systematic review

and meta-analysis. JAMA 309:71-82.

[7] McGee D L, Diverse Populations Collaboration (2005). Body-mass index and mortality:

a meta-analysis based on person-level data from twenty-six observational studies. Ann

Epidemiol 15:87-97.

[8] Janssen I, Mark A E (2006). Elevated body-mass index and mortality risk in the elderly.

Obes Rev 8:41-59.

[9] Flegal K, Graubard B, Williamson D, Gail M (2005). Excess deaths associated with un-

derweight, overweight, and obesity. JAMA 293:1861-1867.

[10] Gronniger J T (2006). A semiparametric analysis of the relationship of body-mass index

to mortality. Am J Public Health 96:173-178.

[11] Orpana H, Berthelot J-M, Kaplan M S, Feeny D H, McFarland B, Ross N A (2009). BMI

and mortality: results from a national longitudinal study of Canadian adults. Obesity

18:214-218.

[12] Trefethen N. BMI (body mass index). Available at http://people.maths.ox.ac.uk/

trefethen/bmi.html; accessed May 21, 2015.

[13] Devlin K (2009). Do you believe in fairies, unicorns, or the BMI? Available at https://

www.maa.org/external_archive/devlin/devlin_05_09.html; accessed May 21, 2015.

18



[14] Trefethen N (2013). Letter to the editor. The Economist.

[15] US National Institutes of Health. Resources for researchers. Available from http://

dietandhealth.cancer.gov/resource; accessed May 21, 2015.
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