Eurographics Conference on Visualization (EuroVis) 2013
B. Preim, P. Rheingans, and H. Theisel
(Guest Editors)

Volume 32 (2013), Number 3

Appendix: Maximum Entropy Summary Trees

Howard Karloff! and Kenneth E. Shirley1

TAT&T Labs Research, Florham Park, NJ, USA

This is an appendix to “Maximum Entropy Summary
Trees." Section 9 provides details of the proof of the approx-
imation algorithm that is described in Section 6 of the main
paper; Section 10 includes a proof of Lemma 2 from Sec-
tion 5.1 of the main paper (the inductive step of computing
maximum entropy summary forests across a given node’s
children); and Section 11 provides an interesting example of
a tree where the greedy heuristic described in Section 8 of
the main paper does poorly in comparison to the exact algo-
rithm.

9. A polynomial-time additive approximation algorithm
9.1. High-level description

The additive approximation algorithm takes a tree T,
weighted with nonnegative real weights (w;), a positive inte-
ger K, and an € > 0, and produces, for each k < K, a k-node
summary tree whose entropy is at most € less than that of the
optimal k-node summary tree.

The idea underlying the algorithm is simple—(1) scale
the weights uniformly so that they sum to an integer W,
whose value will be determined later; (2) carefully round
real weight w; to wi € {|w;],1+ |w;]}; and (3) run the
dynamic-programming algorithm of Section 5 of the main
paper on the results. Doing so, however, in such a way as
to guarantee small enough error relative to the optimum for
(w1,w2,...,ws) while simultaneously keeping the running
time down is quite nontrivial. Larger W gives better accu-
racy at the cost of a larger running time. (We will always en-
sure that Y w! = ¥ w; = W to keep the normalization simple.)
Specifically, we have to address two questions: (1) how does
the entropy of a maximum entropy summary tree change
if weights are rounded, and (2) how should one round the
weights?

Our two-part answer to question (1) is given in Lemmas 5
and 6. Any k-node summary tree corresponds to a partition
of the vertex set V = V(T') into k parts. For a single fixed but
unknown partition (S1,S»,...,S;), we are interested in two
probability distributions. One, with W; denoting ¥ 5; Wis

(© 2013 The Author(s)

Computer Graphics Forum (© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

is the probability distribution (W; /W, Wa /W, ..., Wi /W). The
second is the same with w/ in place of w;; specifically, it is
(W{ /W, W3 /W, ... Wi /W) W, with W] = Yc wi. We are
interested in how much the entropies of the distributions
(W), Wy, ... W)/W and (W],Wj,...W/)/W differ. Fortu-
nately Lemma 6 [Nau0O4] bounds the entropy difference in
terms of the L; distance between the distributions. There-
fore, we ask, how can we round the weights to keep the
L, distance (ZI;‘:1 |Wj —W/|)/W small, without knowing the
partition (81,52, ...,Sk) in advance?

The surprising result is that if one ensures that for any
node v in the known input tree T, the sums of w;/W and
wi/W over descendants of v are almost the same, then for
any unknown partition (S1,S,,...,S;) derivable from a k-
node summary tree, the two induced probability distributions
will have small L; distance Y'X_, |(W/ —W;)/W|. This fact
is proven in Lemma 5. The beauty here is that T is known
in advance, whereas (S1,S3,...,5;) is not. We define subtree
absolute discrepancy M to be the maximum, over nodes v, of
the absolute difference between the sums of w; and w} over
descendants i of v.

This argument motivates the answer to (2): we should
round the weights so that the subtree absolute discrepancy
is small. How to do so is an interesting question in itself.
There is much work on discrepancy theory for general set
systems [Spe94, Cha00]. The surprising fact, known before
but rediscovered together with an associated algorithm by
the authors, is that one can round the w;’s while giving sub-
tree discrepancy M bounded by 1, for any 7'.

Having said all that, the real argument is more compli-
cated. There is no single partition (S1,S5>, ..., ;) with which
one works. One has to argue that rounding weights from w;
to w} gives a new solution which is neither too large nor
too small. To do this properly, one has to start the argu-
ment from the optimal partitions for both weights (w;) and
weights (w}). This argument is given in Lemma 7.



Howard Karloff & Kenneth E. Shirley / Appendix: Maximum Entropy Summary Trees

9.2. Details

Recall that we denote by 7" an n-node tree on {1,2,...,n}
whose ith node has real weight w;.

We give an algorithm which takes a tree T" on
{1,2,...,n}, whose node i has nonnegative real weight w;,
positive integer K, and a positive real €, and returns, for
each k < K, a k-node summary tree whose entropy is at
least OPTy(T") — ¢, where € > 0 is a parameter. The run-
ning time of the algorithm (to generate all K trees) is
O((K3 /e)nlog(max{K,1/€})), though this is just a tree-
independent worst-case upper bound.

In a rooted tree 7', x € V(T'), let T, denote the subtree of
T rooted at x.
Definition 6. Suppose (w;), (w}) are both real-valued
weight functions defined on {1,2,...,n}.

1. The (signed) discrepancy disc(S) of a set S C {1,2,...,n}
is disc(S) = ¥ics(Wi — w;).

2. The absolute discrepancy of a set S C {1,2,...,n} is
|disc(S)].

3. Relative to tree T, the subtree absolute discrepancy M is
max; |disc(V(T;))|.

4. Given an ordered partition P = (S1,S2,...,5)
of {1,2,...,n}, the absolute discrepancy of P is
Y [disc(Sp)].

Definition 7. Say the pair (w,w') of weight functions is

nearby if |w} —w;| < 1 for all i.

We start with our discrepancy lemma.

Lemma 4. There is a O(n)-time algorithm that takes n and
an n-node rooted tree T on {1,2,...,n} rooted at node 1, and
a sequence (Wi,wy,....,wn) of nonnegative reals, and pro-
duces a sequence wi,wh,...,wl, with wi € {|w;],1+ |w;]}
such that the subtree absolute discrepancy M is at most 1.
Furthermore, if the w;’s sum to an integer, the w,’» ’s will have
the same sum.

The existence of a rounding with subtree absolute discrep-
ancy strictly less than 1 follows from a much more general
result [Doe04], which itself follows on similar earlier results.
The existence of the algorithm also probably follows from
earlier results and will not be included here for lack of space.

Here is the algorithm.

1. Choose an integer W, as described later, and scale
(W1,w3,...,wn) to have sum W.

2. Using Lemma 4, produce a sequence (w|,w),...,wp)
with w; € {{w;],1+ |w;|} having subtree absolute dis-
crepancy M < 1 and with ¥ w} = W.

3. Run the exact dynamic-programming algorithm of Sec-
tion 5.2 of the main paper on tree 7,,, to get an optimal
k-node summary tree T’ for T, .

4. Output tree Z, which is T’ except with weights (w;) in-
stead. (In other words, output the same summary tree,
but with the weight of a cluster containing nodes S C
{1,2,...,n} being ¥;csw;, instead of Y;cgw!.)

Definition 8. Say a node v in a summary tree T' is a single-
ton node if its cluster has size 1, is a tree node if its cluster
has size exceeding I and it represents V (Ty) for some node
x, and otherwise is an “other” node.

Note that any “other” cluster which corresponds to the de-
scendants of exactly one child of a node v is being renamed
a tree node or a singleton node for the purpose of this defini-
tion. Also note that every node in a summary tree is exactly
one of singleton, tree, and “other.”

Definition 9. Say a node in a summary tree T' is active if it
is not an “other” node. Let Ay be the set of active children
of v in the summary tree T’ and let a, = |AV\.

It is obvious that ¥,cy(rya(v) < k if T’ is a k-node
summary tree, since A, NA, = @) for u # v implies that
Y, Ay <k

Now we show that keeping small the subtree absolute dis-

crepancy relative to 7' ensures that the absolute discrepancy
of the partition associated with every k-node summary tree
of T will be small.
Lemma 5. Let T be a rooted tree on V = {1,2,....n} and
let (w,w') be a nearby pair of weight functions on V. Let
M be the subtree absolute discrepancy (relative to tree T)
of that pair. Let D = k+ 2kM. Let P = (51,53, ...,Sk) be the
partition of V defined by any k-node summary tree T' for T.
Then the absolute discrepancy of P is at most D.

It is important for this lemma that P be derived from a k-
node summary tree for 7 (and not be an arbitrary partition
into k parts).

Proof. We need to prove that YX | |disc(S;)| < k + 2kM,
where M = max,cy(r)|disc(V(Ty))|. Bach set S; corre-
sponds to either a singleton node in 77, a tree node in 7",
or an “other” node in T”.

If S; corresponds to a singleton node in 7”, then |S;| = 1
and, say, S; = {u}. Then |disc(S;)| = |wu —w},| < 1, because
(w,w') is nearby.

If S; corresponds to a tree node in T”, then there is
a node x € V(T) such that S; = V(T) and |disc(S;)| =
‘Z)’EV(TX)(W; —wy)| <M.

Now if u is an “other” node in 7', which is clus-
ter C in T, whose parent in T’ is v, then disc(V(T,)) =
(W — wy) 4+ Luea, disc(V(T)) + disc(C), and therefore
disc(C) = disc(V(T)) — (W), — wy) — Laea, disc(V(Tu)).
Hence |disc(C)| < |disc(V(Ty))| + 1+ Lea, |disc(V(Ta))|
< M+ 1+ ayM. Clearly this can be bounded by 1+ (k +
1)M, proving that ¥, |disc(S;)| < k(14 (k+ 1)M), but we
can do better.

Let ky be the number of singleton nodes in T, let k; be
the number of tree nodes in 7”7, and let k, be the number of
“other” nodes in T”. Clearly ks + k& +ko = k.

Any “other” cluster S has a parent node « in the summary

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.



Howard Karloff & Kenneth E. Shirley / Appendix: Maximum Entropy Summary Trees

tree. Let parent(S) denote the parent of S, which is a sin-
gleton node. Hence a,4,¢s(s) denotes the number of active
children of the parent of S in the original n-node tree.

We now have Y.g isan “other” cluster |disc(Si)| <
koM +ko +M Y, is an “other” cluster Ypareni(s;) < KoM +
ko + Mk, since Y, ay < k and no node has two “other” chil-
dren. Now Y1 ; [disc(Si)| < (ks - 1) + (keM) 4 (koM + ko +
Mk) < k+2kM. O

Note. Via Lemma 4, we can guarantee that M = 1 and
hence, by Lemma 5, that D = 3K.
Definition 10. Ler Wy = [10DIn(max{K,1/¢e,10})/e].

In the rest of this section we will prove the following the-
orem.
Theorem 2. The tree Z produced by the algorithm is a k-
node summary tree for T having (binary) entropy at least
OPT(T") —¢, provided that W is chosen large enough that
W > D/K and that forn = D/W,

2
= - <e.
(lnz) N(1+InK—1Inn) <e
The least such W is at most W,,.

Let us first analyze the running time.
Theorem 3. The running time of the algorithm is
O((K> /e)nlog(max{K,1/e})).

Proof. ¥, wi = W < W,. The running time of the exact al-
gorithm is O(K*nW ) and W is O((K /€) log(max{K,1/e})).
O
Definition 11. For sequences (pi,pa,...,pr) and
(q1:92+---1qx) of the same length, k, of nonnegative
reals summing to 1, let H(p) = —YX | piInp;, where
“0In0” is taken to be 0, and let ||p — q||, = Y5, |pi — qil.

To prove Theorem 2, we need a lemma, equation (55) in
[Nau04], which is a quantitative version of the statement that
almost identical probability distributions on {1,2, ...,k } have
almost identical entropy.

Lemma 6. [Nau04, equation (55)] For 2 < k < K, se-
quences (p1,D2,-,Pk)» (41,92, qk) of the same length
of nonnegative reals summing to 1, and y < k such that

[lp—alli <.
|H(p) —H(q)| <¥(1+InK —InY).

We need a simple lemma whose proof uses Lemma 6.
First we need a few definitions, which deal with two dif-
ferent k-node summary trees. (We will apply this lemma
to the optimal k-node summary trees for (wy,wa,...,wn)
and (w},w),...,w;,).) Definition 12 and Lemma 7 essentially
state that for a fixed partition of {1,2,...,n} into k parts, the
associated probability distributions defined by w and w’ will
have almost the same entropy, provided that n = D/W is
small. Quantitatively the lemma tells us how large W must
be, in order to guarantee error less than €.

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Definition 12.

1. Let (S],S5,...,S;) be a partition of {1,2,...,n} given by
a k-node summary tree. Let §; = Y ;csw; and let p; =

J
§;/W. Analogously, for the w'’s, let s; = Z,»GS; wi and
p_'/- = s_’j JW.

2. Let (S1,S2,...,S;) be a second partition of {1,2,...,n}
given by a k-node summary tree. Just as above, let s; =
Zies,- w; and let pj = s;j/W, and analogously let §; =
Yies, Wi and pj =5;/W.

3. Last, let A=n(1+InK —Inn), where recall from Theo-
rem 2 thatm = D/W.

Now we are ready for our lemma.

Lemma 7.
HE(p) —H*(p)] <A 3)
and
[H(p) —H*(P)| < A. @
Proof. We have
k

p—r'lli =Y 15— pill
=1

= o ldisc(S1,5,... 1) <
By Lemma 6,
HE () — B () <11 +InK — ) = A

Similarly,

k
llp—plli=Y, |pj—pjll
=

(£)-(2)

< o ldise((81,82,...50)| <

By Lemma 6,
|5 (p) — H(P)| <M (1 + K ~Inn) =A. O

Here is the proof of Theorem 2.

Proof. Let (S1,55,...,5;) be the partition of {1,2,...,n} de-
fined by a k-node summary tree of maximum entropy for
weights (W}, wh,...,wn). Similarly, let (S1,S5,...,S;) be the
partition of {1,2,...,n} defined by a k-node summary tree
of maximum entropy for weights (wy,w»,...,w,). Equation



Howard Karloff & Kenneth E. Shirley / Appendix: Maximum Entropy Summary Trees

(4) shows that there is a k-node summary tree for ™ (us-
ing (51,52, ...,Sk)) of entropy at least H*(p) > H¢(p) — A=
OPT{(T") — A, where OPT{ (T") = (In2)OPT,(T") is the
optimal value of H® over k-node summary trees of T".
Therefore

OPT{ (T ) > H*(p) > OPT(T") — A. )

It follows that the entropy H®(T’) of the output tree
(which has weights derived from w, not w’) satisfies
H(T) = H(p) > H*(p') — A (by (3)), which equals
OPTY(T"' ) — A > (OPT¢(T") — A) — A (by (5)), which
equals OPT (T") — 2A. Converting now from natural to bi-
nary entropy, we have H, (T") > OPT (T") — (é) A. Now

it is a simple matter to choose W to be the least positive in-
teger at least D/k (so that 1 = D/W < k) such that

2\D w
— | = |1+IhK+In— ) <e.
(1n2)W(+n +nD)_8

The reader can verify that the optimal W satisfies W < Wj.
O

Since g(x) = (D/x)(1 +InK +In(x/D)) is decreasing on
(D/K,0), one can use binary search on [[D/K], Wp] to find
the smallest integer W in that interval with g(W) <e.

10. Proof of Lemma 2 (Section 5.1)

Here we prove the inductive step of computing g, (I, k,w) for
k=1,...,K—1and w= —1,0,1,...,W given the following
quantities:

1. the values of g,(I — 1,k,w) for k =1,..,K — 1 and
w=—1,0,1,..,W.

2. the values of Fy,(j) for j =1,...,K — 1 (the entropies of
the maximum entropy j-node summary trees rooted at v;
forj=1,..,K—1).

3. sy, the size of node v;.

Proof. 1t is clear that for I > 2, gy (I, 1,8y, +5v, +- - +8v;) =
0 and gy(I,1,w) = —oco for all other w, —1 <w < W.

Now suppose [,k > 2. For part 2 of Lemma 2, a maxi-
mum entropy k-node summary forest for the the union of the
first / children and having no “other” node must consist of
a maximum entropy summary forest for the first / — 1 chil-
dren, which has no “other” node, and having some number
ki of nodes, together with a maximum entropy (k —kj )-node
summary tree for the subtree rooted at the /th child.

For part 3 of Lemma 2, consider a maximum entropy sum-
mary forest for the union of the subtrees rooted at the first /
children, having an “other” node of weight w > 0. Let Z be
the set represented by the “other” node. By the definition of
a summary tree, either ZNV(Ty,) = 0 (which is case (a)), or

Z =V(Ty,) (which is case (b)), or Z 2 V(Ty,) (which is the
most complicated case, (¢)).

In case (a), we must have a summary forest for the union
of the first / — 1 children having some number k1, 1 <k <
k — 1, of nodes (all such possible values for k| being valid),
together with a summary tree on k — k; nodes having no
“other” node for Ty,. (If k — k; = 1, the summary tree for
T,, may or may not contain an “other” node; it doesn’t mat-
ter.) The summary forest and the summary tree must both be
of maximum entropy, as otherwise, by equation (2), the fi-
nal tree would not have maximum entropy. That the formula
given in part (a) is correct follows from the computation of
the entropy of the resulting summary forest.

In case (b), we must have a summary forest for the first / —
1 children, which has no “other” node, which is combined
with a 1-node summary tree for 7,, which has an “other”
node of weight w = sy,. The formula is correct since it simply
gives the entropy of the resulting summary forest.

Case (c) is tricky. We had a summary forest of the union
of the subtrees rooted at the first / — 1 children, one node
of which was an “other” node, plus one tree, Ty,, all of
whose nodes form one “other” node. We have to “merge”
the “other” node of the summary forest for the first / — 1
children with the set V(T;,), to get an enlarged “other” node
(and a k-node summary forest for the first / children). It fol-
lows that the summary forest of the union of the first / — 1
children must have had k nodes.

Computing the entropy of the new summary forest is not
trivial. Specifically, let M = sy, 4+ -+ + sv,_, be the sum of
the weights of all nodes in the k-node summary forest for the
union of the first / — 1 children, including the one “other"
node. Let H be the entropy of that k-node summary forest.

The surprising lemma that makes dynamic programming
feasible is that the entropy of the summary forest in which
the set V(T;,) is merged with the “other” node of the first
[ — 1 children, to get an enlarged “other” node, is given by a
function of H, M, w and s,, alone (and doesn’t depend, for
example, on the individual weights of the nodes of the pre-
vious k-node summary forest). The result is similar to Equa-
tion (2). The calculation is as follows.

H=g/(—1,k,w—s)

Sowi ru
-~ £l
=M A\M

by the definition of entropy, where we use u; to denote the
individual weights of the k nodes in the maximum entropy k-
node summary forest for the union of the subtrees of the first
[ — 1 children. Next, we rewrite the entropy by separating the
“other" node from the sum:

k—1

15 ) - ().

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.



Howard Karloff & Kenneth E. Shirley / Appendix: Maximum Entropy Summary Trees

where the weight of the “other" node is w — sy,.

Next, we write the entropy of the (new) summary forest
for the union of the first / children, where the subtree rooted
at the /th child has been merged into the “other" node under
v
k—1

Y u lg(7>+ lg< i )
= M+ sy, M + sy,

1

r__—l

M+Sv,

Note that this summary forest still has k nodes, the weight of
the new, merged “other" node is w, and the total weight of
the summary forest is M + sy,.

We focus on the summation in the expression of the en-
tropy of the new summary forest. The key to getting a dy-
namic program to work is to be able to compute this sum-
mation without knowing the individual u;’s. To do this, we
write

Tote(rt) w E (),
= M+svl M M + sy,
which can be simplified to
k—1 k=1
u; u; u; M
MYy Y (7) MYy Yy ( )
Lo 'ea) M ke s,

The left term can be written in terms of H, the entropy of the
old summary forest:

k—1
uj uj w—38y,
MY Sig(3) =M | —H — (w—s)1g (M) |
; 805, { (w—sv)lg(—7
The right term can also be simplified:

u, M
N e B e
Z Vg R G s L)

because the sum of the k — 1 non-“other" weights is simply
M —w+sy,.

Now the expression for the entropy of the new k-node
summary forest for the union of the first / children can be
expressed as a function of H, M, w, and sy,, and further sim-
plification leads to the formula in part 3(c) of Lemma 2 of
the main paper. O

11. A bad example for greedy

An interesting question is, how much smaller than the op-
timal entropy can the entropy obtained from the greedy
heuristic be? Here we give an example for which the heuris-
tic returns a 4-node summary tree of entropy only 2/3 that
of the optimal 4-node summary tree.

Let T be a tree on {1,2,...,7}, with node 1 as the root,
having edges {1,2}, {1,3}, {1,4}, {2,5}, {3,6}, and {4,7}.
Nodes 1, 2, 4, and 5 have weight 0. Nodes 3 and 6 have
weight 1, and node 7 has weight 2. Sorting the children of
node 1 into nondecreasing order by size gives (2,3,4). How-
ever, there is a 4-node summary tree of entropy 1.5 which

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

has clusters {1}, {3}, {6}, {2,4,5,7}. The entropy asso-
ciated with this tree is H(1/4,1/4,2/4) =2-(1/4)1g4 +
(1/2)1g2 = 1.5. The greedy algorithm produces the follow-
ing vectors for K = 4:

1. elist, = (0,0, —0c0, —00).
2. elisty = (0,1, —00, —00).
3. Ly =(0,0,1,1).

4. elisty = (0,0, —00, —00).
5. Ly =(0,1,1,1.5).

6

. Final output entropy vector, after attaching the root:
(0,0,1,1).

Hence, for k = 4, the optimal algorithm obtains 1.5 bits of
entropy, as contrasted with the 1 bit obtained by the heuristic,
thereby obtaining 2/3 of the available entropy.

However, we have no example for which greedy obtains
only 2/3 of the optimal entropy, when the optimal entropy
goes to infinity. Nor do we know if there is any fixed positive
lower bound on the ratio between the entropy obtained by
greedy and the optimal entropy, the so-called performance
ratio.

References

[Cha00] CHAZELLE B.: The Discrepancy Method: Randomness
and Complexity. Cambridge University Press, New York, NY,
USA, 2000. 1

[Doe04] DOERR B.: Linear discrepancy of totally unimodular
matrices. Combinatorica 24, 1 (January 2004), 117-125. 2

[Nau0O4] NAUDTS J.: Continuity of a class of entropies and rel-
ative entropies. Reviews in Mathematical Physics 16, 6 (2004),
809-822. 1,3

[Spe94] SPENCER J.: Ten Lectures on the Probabilistic Method,
2 ed. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 1994. 1



