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Abstract—Measurement of the lexical properties of domain
names enables many types of relatively fast, lightweight web
mining analyses. These include unsupervised learning tasks such
as automatic categorization and clustering of websites, as well
as supervised learning tasks, such as classifying websites as
malicious or benign. In this paper we explore whether these
tasks can be better accomplished by identifying semantically
coherent groups of words in a large set of domain names using a
combination of word segmentation and topic modeling methods.
By segmenting domain names to generate a large set of new
domain-level features, we compare three different unsupervised
learning methods for identifying topics among domain name
keywords: spherical k-means clustering (SKM), Latent Dirichlet
Allocation (LDA), and the Biterm Topic Model (BTM). We
successfully infer semantically coherent groups of words in two
independent data sets, finding that BTM topics are quantitatively
the most coherent. Using the BTM, we compare inferred topics
across data sets and across time periods, and we also highlight
instances of homophony within the topics. Finally, we show
that the BTM topics can be used as features to improve the
interpretability of a supervised learning model for the detection
of malicious domain names. To our knowledge this is the first
large-scale empirical analysis of the co-occurrence patterns of
words within domain names.

I. INTRODUCTION

By the end of 2015, approximately 314 million domain
names had been registered across all top-level domains, in-
cluding approximately 15 million domain names that had been
registered in the fourth quarter of 2015 alone [39]. The iden-
tification of patterns and trends in domain names is important
for accurately categorizing websites, optimizing search query
algorithms [10], [14], and detecting major events [32], [37].
From the perspective of a network service provider, identifying
emerging malicious domain names and protecting web users
from new malicious attacks is a critical business activity [3].
Until now most web mining efforts related to domain names
have focused on basic, low-level characteristics of domain
names, such as their lengths, the distribution of their top-
level domains (TLDs), and the frequencies of characters and
digits within them. However, given the interchangeability of
homophones [29] and the use of typos in domain names [20],
[26], it is of interest to also analyze higher-level characteristics
of domain names, such as which words they contain, and to
what extent words co-occur in semantically coherent groups.

1This work was done while the author was at AT&T Labs Research.

Latent, interpretable structure in domain names can serve as a
useful predictor of emerging trends and threats by providing
an informative overview of the semantic properties of domain
names across the whole network. An automated method for
discovering this structure provides a useful complement to
rules-based approaches for security monitoring, where the
rules need to be frequently updated and monitored by domain
experts.

In this paper we analyze domain names by algorithmically
segmenting them into one or more individual tokens, and
subsequently fitting an unsupervised learning model to the
collection of domain names, where each segmented domain
name is treated as an individual document. In our experiments,
we compare three different unsupervised learning models for
identifying semantically coherent groups of words, or topics:
spherical k-means clustering (SKM), Latent Dirichlet Alloca-
tion (LDA), and the Biterm Topic Model (BTM), since it is
unknown which method will work best in this new problem
domain. In each method, the user specifies how many topics
(or clusters) to infer from the data, and each inferred topic
(cluster) is represented by a vector of weights over all the
terms in the vocabulary. We use a quantitative measure of
topic coherence [25] to measure and compare the semantic
coherence of the inferred topics from each method.

This paper makes the following main contributions:
• We outline a novel end-to-end text mining approach com-

bining word segmentation with topic modeling to con-
struct a low-dimensional representation of words within
domain names.

• We implement our approach on two collections of domain
names: (1) those listed in the Open Directory Project
(DMOZ), and (2) a sample of domain names that were
visited on the cellular network of a large U.S. telecom-
munications company in 2013-2014 (hereafter denoted
the cellular data). We evaluate the inferred topics for
each data set quantitatively and qualitatively, and find the
topics to be interpretable, robust, and useful for revealing
the complex semantic relationships between words within
domain names.

• We show that the results from the fitted topic models can
be used to detect changes in domain name word groups
over time, and to improve the interpretability of super-
vised learning models for malicious domain detection.



The rest of the paper is structured as follows: Section II
discusses previous research in this area; Section III describes
the data sets we analyze; Section IV describes the models
and methods that we used to perform the analysis; Section V
describes the basic results; Section VI provides a discussion of
the interpretability of the learned topics; Section VII discusses
using topics as features in a supervised learning setting, and
Section VIII discusses potential future work.

II. BACKGROUND

In this section we provide an overview of related work
on text mining for domain names, applications of word seg-
mentation algorithms for URLs and domain names, and topic
modeling for short documents.

Domain Name Keywords: The increasing growth of newly
registered domains has led to investigations into the properties
of the keywords used in domain data. In 2006, Forbes [13]
performed a descriptive study on a sample of 3.5GB .com
domain names and reported findings on domain length distri-
butions (based on the number of characters), the percentage of
common names in the U.S. Census Bureau that have been used
to register domain names, and the most common letters and
digits to start a domain name. A 2008 study by McGrath and
Gupta [24] further found that the length of domain names, the
frequencies of certain characters, and a set of curated brand
names are strong indications of phishing URLs and domains.
More recently, Verisign made publicly available an API tool
that makes it possible to visualize trends in domain names by
providing time series plots of top-trending or user-specified
words in new .com and .net domain names [38]. These
studies all considered words in isolation and did not study
word co-occurrences within domain names.

Word segmentation on domain names: Word segmenta-
tion, defined as breaking a single string into a sequence of one
or more non-empty substrings, has been applied to domain
names in the past. Wang et al. [41] performed a series of
experiments performing word segmentation on full URLs, and
Srinivasan et al. [36] extended this approach by incorporating
the lengths of segments into their algorithm. In both cases, the
goal of the analysis was to evaluate the word segmentation
algorithm by checking performance against a ground-truth set
of segmented domain names. In contrast, we segment domain
names, not full URLs, with the goal of using the constituent
tokens as input into an unsupervised learning model.

Supervised learning with segmented domain names:
Segmented text from domain names and URLs has been used
to create features in many supervised learning applications in
which the goal is to detect malicious websites ( [15], [21],
[22], [33], [42]). In most cases, certain individual words (brand
names, URL spoofs, and others) were found to be associated
with malicious websites. In our study, we segment the domain
names using the same method as [42], but use the segmented
text as features for an unsupervised learning analysis, revealing
useful relationships between the words. We then explore the
value of using the topics themselves as features in a subsequent
model (see Section VII).

Topic modeling for short documents: The increased avail-
ability of data from the web has led to a growing literature
on applying topic models to short documents. One approach
to extracting topics from short documents is to modify the
LDA model assumptions, (since LDA has difficulties with
short documents [18]). Two recently proposed models include
the Biterm Topic Model (BTM) [44], which incorporates the
co-occurrence patterns of the entire corpus into the generative
model, and a Gaussian mixture model trained on vector rep-
resentations of words [35]. In this paper we include standard
LDA and BTM in our experiments as candidate methods for
extracting semantically coherent topics from domain names.

III. DATA

We analyze domain names from two different sources of
data: (1) a sample of domain names that were listed in the
Open Directory Project (DMOZ) in April of 2015 [12], and
(2) a sample of domain names that were visited on the cellular
network of a large U.S. telecommunications company during
2013-2014. In this section we describe each data set in detail.

A. DMOZ Data

We downloaded the “content” component of the DMOZ data
(excluding the “Kids and Teens”, “Regional”, and “World”
top-level categories) in April, 2015, which contained a set of
URL-category pairs, where each URL in the directory was
assigned to one or more categories in the DMOZ category
hierarchy. From the resulting initial set of 1,088,060 unique
URL-category pairs, we then extracted the effective second-
level domain name from each URL. Given a full URL, we
first identified the top-level domain (TLD) by utilizing the
public suffix list [27]. The effective second-level domain name
is defined as the combination of the TLD and the string of
characters between the TLD and the second period to the left
of the TLD. For example, in the URL http://dendro.cnre.vt.
edu/dendrology/syllabus2/factsheet.cfm?ID=638, the TLD is
edu and the effective second-level domain name is vt.edu.
(Note that dendro.cnre is a subdomain, and everything
that follows the TLD is part of the URL path, both of which
we ignore in our analysis). After reducing the URLs to their
second-level domains, our final DMOZ sample consisted of
659,775 unique second-level domains, which are hereafter
referred to as domain names, or simply “domains”.

B. Cellular Data

Our second data set contains daily “fresh domain” data
collected by a large U.S. telecommunications company during
2013 and 2014. A “fresh domain” is defined as a domain name
visited on a mobile device for the first time by any mobile
user in the past 30 days, meaning the data contains a mixture
of newly created and infrequently visited domain names. The
data does not contain any additional information about domain
traffic, nor does it contain any personal identifiers or search
terms. By definition every fresh domain name collected within
a thirty day span is unique. In order to potentially capture
interesting holiday effects, we selected two week-long batches

http://dendro.cnre.vt.edu/dendrology/syllabus2/factsheet.cfm?ID=638
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of fresh domains from the cellular data to analyze: (1) those
from the week surrounding Thanksgiving, 2013 (November
26, 2013 to December 02, 2013), and (2) those from the
week surrounding Valentine’s Day, 2014 (February 12, 2014 to
February 18, 2014). We combined these two weeks to create
one sample of data. There were 17,997 domain names that
appeared during both weeks. We considered these domain
names to be part of Thanksgiving week and we removed the
duplicate entry in the Valentine’s Day week. This resulted in
a sample of 816,878 unique domain names. We extract the
second-level domain names for this sample as described above.

There is some overlap between the DMOZ and cellular data,
but over 97.7% of the 1,476,653 domain names across the
combined samples are unique.

IV. MODELS AND METHODOLOGY

In this section we describe the methods we use to transform
the raw domain name data into a document-term matrix
suitable for modeling. We also introduce the three methods
we use to extract topics from the data, and the methods we
use to interpret the topics after fitting the models.

A. Word Segmentation

We perform word segmentation on the domain names in
the following steps. First, for each domain name, we remove
the TLD and the period that divides the TLD from the rest
of the domain name. Then we split the remaining domain
name at the locations of hyphens (discarding the hyphens), and
also at the boundaries of any length-1 or greater sequence of
consecutive digits, retaining each sequence of digits as a token.
Last, for each substring that remains in each domain name,
we implement the word segmentation algorithm described by
Norvig [30], which uses a probability model for bigrams based
on the Google ngrams corpus (a sample of which is available
from the author’s webpage, [31]). The bigram model considers
the probability of each token given the previous token, and
the most likely segmentation of a string of alphanumeric
characters into one or more tokens is found using dynamic
programming.

The result is that we can represent our set of D domain
names as a document-term matrix of dimension D × W ,
where W is the total number of unique tokens, hereafter called
terms, in the corpus, and each entry in the document-term
matrix, xdw, is the number of times that term w occurs within
document d. The list of terms is called the vocabulary. We also
denote the number of tokens in document d as Nd, where the
corpus contains a total of N tokens.

B. Stop Word, Rare Words, and Short Documents

In most text mining and topic modeling analyses, the raw
vocabulary contains more terms than are desired. We prune the
vocabulary in our analyses by removing stop words and rare
words. We chose to use a small, or conservative, stop word list,
consisting only of the 26 letters “a”, “b”, “c”, ..., “z”. Among
these only “a” and “i” are valid English words, and upon
inspection, we found that most of the instances of individual

letters as tokens in our data sets were the result of a domain
name that did not consist of concatenated English words,
and was therefore poorly segmented. In some applications
(such as detecting algorithmically-generated domain names via
supervised learning) it may be useful to retain these single-
letter terms in the vocabulary, but in this work we focus on
co-occurrences of interpretable terms. We do not, however,
use a common, larger stop word list, because we choose not
to assume that terms such as “the”, “of”, and “and” (which
are commonly discarded as stop words in analyses of other
corpora, such as news articles, scientific article abstracts, etc.)
are meaningless in the context of domain names. Rather,
we retain all occurrences of these terms to learn empirically
whether or not, in the context of domain names, they co-occur
with other terms in any interesting patterns. Hong and Davison
[18] also included stop words and did not perform stemming in
their Twitter data study. We also remove from the vocabulary
all occurrences of terms that occur fewer than 10 times across
the whole corpus.

The BTM is trained on the set of biterms (pair of co-
occurring tokens) that occur within documents. Thus, to be
consistent across methods, we exclude from our training data
any document consisting of a single token. This is consistent
with the pre-processing routine in [44].

C. Methods for Identifying Topics

The first method we use to identify groups of co-occurring
words within documents is Spherical k-means Clustering,
introduced by Dhillon and Modha [11]. This method partitions
the documents into K clusters, where K is specified by the
user, such that the sum of the cosine distances between each
document and the centroid of the cluster to which it is assigned
is minimized. The model is fit by initially assigning random
cluster IDs to each document, and then alternating between
computing optimal cluster centroids given the cluster IDs,
and computing optimal cluster IDs given the set of cluster
centroids, until the algorithm converges. The result of fitting
the model is a cluster ID for each document, and a K ×W
matrix whose rows contain the length-W cluster centroids for
each of the K clusters. For the rest of the paper we refer to
the length-W centroids of the clusters as topics, or groups of
frequently co-occurring words.

The second method we use to identify topics within domain
names is Latent Dirichlet Allocation (LDA) [6]. LDA states
that the probability of token j within document d, denoted by
the random variable Wdj , is:

P(Wdj = w) =

K∑
k=1

P(Wdj = w | zdj = k)P(zdj = k),

for documents d = 1, ..., D, tokens j = 1, ..., Nd, terms
w = 1, ...,W , and topics k = 1, ...,K, where zdj is the latent
topic assignment of the jth token in document d. The matrices
φ and θ are commonly referred to as the set of topic-term dis-
tributions and the document-topic distributions, respectively,
where the rows of φ, denoted φk for k = 1, ...,K, contain the



length-W discrete distributions over terms for each of the K
topics, and the rows of θ, denoted θd for d = 1, ..., D, contain
the length-K discrete distributions over topics for each of the
D documents.

Each topic-term distribution shares a common prior dis-
tribution, where φk ∼ Dirichlet(β) for topics k = 1, ...,K
and length-W vector β, and likewise each document-topic
distribution shares a common prior distribution, where θd ∼
Dirichlet(α) for documents d = 1, ..., D and length-K vector
α.

The third model we fit to our data is the Biterm Topic Model
(BTM), introduce by Yan, et al [44]. The BTM is similar to
LDA except that instead of each token in the data having a
latent topic assignment, each biterm, or pair of words within a
document, has a latent topic assignment. Furthermore, instead
of each document being modeled as a mixture over the K
topics, the set of all biterms in the corpus is modeled as a
mixture over the K topics, with the Dirichlet prior α applied
to the corpus-wide topic mixture, and the Dirichlet prior β
applied to each topic, just as is the case in LDA. The output
of the BTM is the estimated vector of topic proportions across
the whole corpus, the set of topic-term distributions φk for
k = 1, ...,K, and even though it is not explicitly modeled, the
proportion of tokens within each document coming from each
topic (analogous to θ in LDA) can be estimated.

Note that for each method, the tokens within each document
are exchangeable; in other words, they are all examples of so-
called “bag-of-words” models. Spherical k-means is, in some
sense, the simplest of the three methods, since it models each
document as belonging to a single cluster. On the other hand,
LDA and BTM allow documents to be comprised of a mixture
of topics, where the latter is expected to be well suited for short
documents.

D. Topic Interpretation

To compute a quantitative measure of topic interpretability,
we measure the topic coherence for each topic in the models
we fit. There are essentially two types of coherence measures
for topics: extrinsic (e.g. [28]) and intrinsic (e.g. [25]). We
choose not to use an extrinsic measure of topic coherence
because such methods rely on a comparison of the properties
of inferred topics in the corpus of interest to word co-
occurrences in a large external corpus, such as newspaper or
Wikipedia articles. Given that we don’t expect the properties
of our corpus of interest (domain names) to match those of
any existing external corpus, the coherence of topics within
domain names may not be appropriately measured by such
a method. In light of this, we compute coherence using the
measure proposed by Mimno et al. [25], which is an intrinsic
measure that computes the coherence of a topic using the co-
document frequency of the top M most probable terms for that
topic. Specifically, the topic coherence for topic k is given by

coherencek =

M∑
j=2

j−1∑
i=1

log
D(wkj , w

k
i ) + 1

D(wki )

where wkj is the jth most probable term within topic k,
D(wkj , w

k
i ) is the co-document frequency of terms wkj and

wki and D(wki ) is the number of documents containing term
wki . In each of our analyses, we order the topics in decreasing
order of coherence.

V. RESULTS

Here we describe the results of the analyses of the DMOZ
data and the cellular data. First we report summary statistics
of each data set related to the pre-processing of the domain
names to represent them as document-term matrices. Then we
discuss how we selected the number of topics for our analysis.
Last, we report results from the fits of the topic models.

A. Data Preparation

Tables I and III contain summary statistics related to pro-
cessing both data sets into document-term matrices. Here we
describe in detail the processing of the DMOZ data; identical
steps were taken for the cellular data.

We segmented the original D = 659, 775 unique domain
names in the DMOZ data using the word segmentation algo-
rithm described by Norvig 2009. There were 1,497,947 total
tokens among the 659,775 domain names, resulting in an av-
erage of 2.27 tokens per domain name, with a mode of 1 token
per domain name and a range of 1-16 tokens per domain name.
This average number of tokens per domain is comparable
to that found in analyses in [41] (2.66 tokens/domain) and
[36] (2.21). The DMOZ sample originally contained 118,955
unique token types (terms).

To see how well the word segmentation algorithm worked
on the DMOZ data in general, we compare the most frequent
terms from the DMOZ data with the 1/3 million most frequent
unigrams from Google’s ngram corpus [7]. We found that
among the most frequent 10,000 terms from the DMOZ
domains, 9,913 of them were among the 1/3 million most
frequent Google unigrams, and the 87 terms that were not in
the unigram list were all numbers, and 90% of these DMOZ
terms were among the most frequent 28,000 Google unigrams,
indicating a substantial level of agreement between the two
corpora.

We then removed all occurrences of the 26 stop words
“a”, “b”, ..., “z”, and all occurrences of the 101,292 terms
that occurred fewer than 10 times across the D = 659, 775
documents. The removal of stop words and rare words re-
sulted in deleting 101,318 terms from the vocabulary and
295,394 tokens from the corpus, leaving a vocabulary with
W = 17, 636 terms, and a corpus with N = 1, 202, 553 tokens
and D = 598, 710 documents. Last, we removed 155,444
documents that consisted of a single token, resulting in a total
of N = 1, 047, 109 total tokens and D = 443, 266 documents
in the corpus, where each remaining document contained two
or more tokens. The size of the vocabulary was not affected
by the removal of single-token documents. Table II contains
the 20 most common terms in the processed DMOZ sample.



TABLE I
SUMMARY OF THE RAW SEGMENTED TEXT

DMOZ Cellular
Unique Domain Names 659,775 816,878
Total Tokens 1,497,947 2,130,896
Avg Tokens/Domain Name 2.27 2.61
Max Tokens/Domain Name 16 17
Min Tokens/Domain Name 1 1
Mode Tokens/Domain Name 1 2
Unique Token Types (terms) 118,955 128,611

TABLE II
DMOZ TERM FREQUENCIES

Rank Term Freq Rank Term Freq
1 the 11661 11 inc 3242
2 of 6526 12 golf 3058
3 and 5705 13 web 3002
4 club 4509 14 on 2849
5 in 4411 15 design 2727
6 st 3953 16 group 2612
7 church 3761 17 4 2505
8 art 3568 18 to 2455
9 online 3438 19 2 2327

10 law 3245 20 world 2323

B. Tuning Parameters

We implement all three topic modeling methods using open-
source code. We used the software MALLET [23] to fit
the LDA model using Gibbs Sampling, and the R package
skmeans [19] to implement spherical k-means. For the BTM,
we implemented the C++ code made available by the BTM
authors [43].

For LDA and BTM, we used symmetric, relatively non-
informative prior distributions for both the topic-term distribu-
tions and the document-topic distributions, so that the posterior
inference is driven mostly by the data rather than the priors.
Specifically, we set βw = 0.01 for terms w = 1, ...,W , and
we set αk = 0.1/K for topics k = 1, ...,K.

Before fitting the models, one must choose how many
topics, K, to estimate, which is a notoriously difficult problem.
Since LDA is a generative model, one method for choosing K
for LDA is to split the corpus into a set of training documents
and a set of test documents, and then fit several LDA models to
the set of training documents using a different value of K each
time, and then choose the value of K which maximizes the
log-likelihood of the tokens within the set of test documents
[6]. This procedure is objective and relatively straightforward
(see [40] for a discussion of different techniques); we use it
to guide our choice of K for all three methods.

TABLE III
SUMMARY OF THE FINAL PROCESSED TEXT

DMOZ Cellular
N (total tokens) 1,047,109 1,625,750
W (terms in vocabulary) 17,636 22,513
D (documents) 443,266 624,280
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Fig. 1. DMOZ Perplexity vs. Number of Topics

We split our data into training and test sets and we measure
the test set perplexity, as computed in [16], to inform our
choice of K. For the DMOZ data, using a randomly chosen
80% of the documents as training data and fitting models with
K = {10, 25, 50, 75, 100, 200, 400, 600, 1000, 1500} topics,
we find that the perplexity on the test documents is minimized
using a model with approximately K = 1000 topics. Figure 1
contains an illustration of the test set perplexity as a function
of the number of topics for the DMOZ data.

It has been shown, however, that choosing K this way
does not necessarily result in choosing the most interpretable,
semantically meaningful topics, as measured by a large-scale
user study described in Chang et al. [8]. In fact, Chang et al.
found that, in their experiments, as topics became more fine-
grained (in models with a large number of topics), topic inter-
pretability decreased. In light of these findings, we decrease
the number of topics we use in our analysis and experiment
with values of K = 50, 100, 250, and 500 topics. For each of
these values of K, the model still achieves a relatively low
perplexity, while at the same time being parsimonious and
not too burdensome to interpret. We fit models with the same
values of K for spherical k-means and BTM to be consistent
across the experiments.

We performed a similar training/test split on the cellular
data, and found that the test set perplexity was minimized for
K = 1500 topics. Applying the same argument as above, we
ultimately fit the topic models with K = 50, 100, 250, and
500 topics for all three methods.

C. Topic Comparisons

For each model and for each choice of K, we computed
the topic model fits based on 1,000 iterations (LDA or BTM)
or until convergence (SKM) for 10 random initializations. For
LDA and BTM, we compute a point estimate of φk for each
topic k based on the topic assignments from last iteration for
each run. In each case we compute the average coherence



across the K topics based on the top M = 5, 10, and 20
terms per topic, following guidance in [25].

Figure 2 illustrates the mean average coherence across
topics and runs for each method for different values of M , with
bars showing the standard deviations across the 10 runs. For
the cellular data, the BTM topic fits produce the most coherent
topics on average for all values of K. The results depend more
heavily on the choice of K and M for the DMOZ data, but
the BTM topic fits are competitive if not the best in general.
For the rest of the paper, we will focus on interpreting the fits
of the BTM on each data set in more detail.

VI. TOPIC INTERPRETATION

In this section we compare, discuss and interpret the topics
found in our BTM fits. We focus on the BTM with K = 250,
and present results for the run with the highest average coher-
ence. Given the short average length of the documents, our first
objective in this section is to evaluate the interpretability of
the topics based on human inspection. Second, we compare the
topics across data sets, showing that our topic inferences are
robust with respect to the data on which the model was trained.
Third, we compare topics inferred from the cellular data across
two different time periods. Last, we present examples of
homophones and typos that are detected by the topics.

A. Topic Model Fits

The 250 topics varied in size for each of the two data sets.
In the DMOZ data, the probability of the largest topic was
4.7%, and the probability of the smallest topic was 0.06%. In
the cellular data, the probability of the largest topic was 3.7%,
and the probability of the smallest topic was 0.05%.

To interpret the topics we rank terms within topics using
the relevance metric introduced by Sievert and Shirley [34]. In
this scheme, the relevance of term w to topic k is defined as a
convex combination of the logarithm of the term’s probability
within a topic, log φkw, and the logarithm of the term’s lift,
log(φkw

pw
), where pw is the marginal probability of term w

across the corpus. Formally:

relevancekw = λ log(φkw) + (1− λ) log
(φkw
pw

)
.

We used a weight of λ = 0.6, as recommended in [34], to
down-weight terms that are common across the entire corpus.
Ranking terms within topics according to a mixture of their
probability and exclusivity is similar to approaches described
in [4], [5].

Setting M = 5, we order the topics in decreasing order of
coherence. Table IV summarizes the 10 most coherent topics
in each data set. The most coherent topics in both model fits
are easily interpretable from examining a short list of the most
relevant terms, and user-specified labels are provided. The
least coherent topics are more variable, but some themes still
emerge, such as Topics 242 {law, and, smith, miller, thomas}
and 243 {david, alan, md, jones, michael} for the cellular
data, which contain names combined with a profession (law
and medical practices for Topics 242 and 243, respectively).

Across both data sets, we found several hundred of the topics
to be interpretable.

Due to space restrictions we cannot summarize all K = 250
topics that we inferred from each of the two data sets in the
paper. Therefore we have posted summaries of the topics and
all the relevant output from our modeling of the DMOZ data
to our website at http://www.kennyshirley.com/domains, and
we invite readers to browse the results themselves to assess
the usefulness and interpretability of the topics found.

TABLE IV
THE FIVE MOST RELEVANT TERMS FOR THE TEN MOST COHERENT TOPICS

IN EACH DATA SET

Human Label {top-5 most relevant terms}
DMOZ

1: Greek {phi, sigma, alpha, gamma, beta}
2: Costa Rica {costa, rica, loss, weight, contra}
3: Hebrew {beth, temple, shalom, bnai, israel}
4: Christian {holy, lutheran, trinity, cross, blessed}
5: Animal Health {animal, hospital, clinic, vet, veterinary}
6: Los Angeles {angeles, los, backers, pike, speak}
7: Dog Breeds {short, shepherds, hair, german, australian}
8: Home Types {log, homes, timber, cabin, cedar}
9: Golf {golf, club, course, disc, tour}
10: Fishing {fishing, fly, fish, reels, carp}

Cellular
1: Cyber Monday {monday, cyber, 2013, deals, ugg}
2: Black Friday {friday, black, beats, 2013, dre}
3: Surveys {surv, lng, ys, you, nu}
4: Weight Loss {loss, weight, diet, fat, lose}
5: Greek {sigma, phi, alpha, omega, delta}
6: Car Brands {chrysler, dodge, jeep, nissan, ram}
7: Spa {spa, salon, hair, beauty, and}
8: Adult {porn, sex, tube, xxx, gay}
9: Homophones {vow, chr, hear, here, reel}
10: Shoes {shoes, nike, cheap, jordan, lebron}

B. Sample Comparisons

In this section we compare the BTM topics from the two
data sets to assess the robustness of our results, where a
high degree of similarity between topics across the two data
sets would indicate that the topics represent signal in domain
name patterns, rather than noise. To measure the similarity
of a pair of topics, we first compute the Hellinger distance
between each pair of topics across the two data sets [16]. The
vocabularies of the two data sets are not the same, so for the
Hellinger distance computation, we compute the element-wise
differences in square roots across the union of the vocabularies
from each data set.

Figure 3 plots the matrix of pairwise distances between the
K = 250 topics inferred from the each of the cellular and
DMOZ data sets, where topics were matched by minimizing
the sum of pairwise distances (i.e. by solving the linear
assignment problem [16]). From the diagonal of this plot, it is
evident that there is overlap between the topics. Table V lists
the five most relevant terms for the the ten most similar pairs
of topics. These topics are interpretable and closely matched
across data sets, suggesting that the topics learned from the
BTM models are robust with respect to the data on which the
models are trained.

http://www.kennyshirley.com/domains


Fig. 2. Mean coherence values across topics for different data sets and choices of K and M .
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TABLE V
THE FIVE MOST RELEVANT TERMS FOR THE TEN MOST SIMILAR TOPICS

Cellular DMOZ
photography, and, dr, art, scott and, photography, law, david, john

st, saint, johns, louis, paul st, saint, parish, marys, johns
church, baptist, christ, christian, bible church, baptist, christ, cowboy, first
lawyer, injury, attorney, criminal, law lawyer, injury, attorney, criminal, law
new, york, england, orleans, zealand new, york, england, zealand, orleans

law, firm, office, offices, group law, firm, office, offices, elder
of, the, fame, house, taste of, christ, the, lady, our

sigma, phi, alpha, omega, delta phi, sigma, alpha, gamma, beta
bc, 2, law, 3, pm as, bc, is, 2, pc

of, city, center, west, valley of, club, symphony, city, aikido

C. Topics Across Time Periods

In this section we use the BTM topic fits from the cellular
data to explore changes in groups of domain name keywords
over time. Since a single topic model was fit to the two weeks
of cellular data, where the weeks are separated by about two
months, we can compare the topic frequencies across weeks.
To compute the distribution of topics for each week, we first
need to infer the topic distribution for each domain name.
Although the BTM is not a generative model, we follow
the guidance of [44] and assume that the document topic
proportions are equal to the expected biterm topic proportions
based on the biterms in each domain name. We then assign
each domain name to it’s dominant topic, and compute the
topic distribution for each week based on the distribution of

topic assignments.

The Chi-squared test of independence is highly significant,
suggesting that the distribution of topics varies between the
two weeks. To dig deeper into these differences, we use a two-
sample proportion test to detect significant changes in topic
proportions. We use the test statistics to rank topics rather than
report p-values to avoid issues related to multiple comparisons.

The top six most significant topics and their top 10 relevant
keywords are listed in Table VI. Except for the second and
sixth topics, the most significant differences highlight changes
in groups of domain name keywords due to holiday events. In
particular, comparing Thanksgiving week to Valentine’s Day
week, there is a much larger presence of keywords related
to Black Friday, Cyber Monday, Discount Shopping, and
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Fig. 3. Hellinger distances between each pair of topics in the DMOZ data
and cellular data.

TABLE VI
LARGE TOPIC DIFFERENCES ACROSS WEEKS

Topic Z-Score Keywords
2 11.61 friday, black, beats, 2013, dre
9 -9.85 vow, chr, hear, here, reel

42 7.94 tree, christmas, farm, trees, family
19 7.09 outlet, kors, boots, sale, cheap

1 6.83 monday, cyber, 2013, deals, ugg
3 6.16 surv, lng, ys, you, nu

Christmas Trees. From the second and sixth most significant
topics, it is also evident that we may be able to detect
changes in keyword groups due to what appears to be spam
behavior. A previous study [17] found that new spammer
domain names were typically registered in bulk and likely
to have various combinations of common words that relate
to the spam campaign itself. Both topics contain evidence
of sound- and typo-squatting, where Topic 9 is significantly
more prevalent in Valentine’s Day week, and Topic 3 is more
prevalent in Thanksgiving Day week. These are presumably
the weeks in which the spam campaigns were either launched
or gained mainstream exposure. We discuss these topics in
more detail in Section VI-D.

D. Homophones and Typos

The fits of the topic models can also be used to reveal
examples of homophones and typos in domain names.

Typosquatting and soundsquatting are known behaviors in
domain name registrations that take advantage of the human
tendency to confuse homophonous terms (terms with the same
pronunciation, but different meanings) and to make typos.

These patterns are often associated with malicious domain
names, so it is important to detect emerging trends indicative
of these behaviors. As mentioned in the previous section,
Topics 3 and 9 from the cellular data model pick up on several
potential incidences of typosquatting and soundsquatting. To
provide an expanded view of these topics, the top 15 most
relevant terms are

Topic 3: surv, lng, ys, you, nu, spark, slick, fer,
starry, new, kool, gnu, fancy, for, 4

Topic 9: vow, chr, hear, here, reel, stay, er, heer,
moz, prmo, deel, erp, dealz, kool, pr,
deals, of, rmos, rz, mos

From the above, we identified a series of domain names
associated with Topics 3 and 9 that used the terms in the sets
(“4”, “for”, “fer”), (“new”, “nu”), and (“hear”, “here”, “heer”)
interchangeably. The topics also picked up on the misspellings
of the terms surveys (“surv” + “ys”), sparkling (“spark” +
“lng”), and promos (“pr” + “mos”). Upon inspection of the
actual domain names in the data, we confirmed that these
were typos that were not recognized by the word segmentation
algorithm, because they do not constitute words in the En-
glish language. However, by learning the term co-occurrence
patterns, we are able to identify them from the topic models.
In the next section we further explore the usefulness of topic
models for the identification of malicious domain names.

VII. SUPERVISED LEARNING

In this section, we investigate whether the topics learned
from our unsupervised learning models can be used as features
in a supervised learning task to improve model performance.
Our supervised learning task is to detect malicious domain
names, where maliciousness is encoded as a binary variable,
and indicates that a website is untrustworthy (usually sus-
pected of hosting malware or a phishing attack). As noted
by Ma et al. [22], lightweight models for detecting suspi-
cious websites are a crucial safety tool for network providers
because blacklists and other traditional website reputation
scoring methods can be slow to adapt to new threats. Models
based solely on lexical characteristics of a domain name, such
as those introduced in this paper, can serve as useful com-
plements (rather than substitutes) to more expensive methods
that use, for example, website content or domain registrant
information as features. In security applications, [1] point out
that the quality of an intrusion detection system depends on
both the predictive accuracy of its underlying model as well
as the time required of an analyst to take action based on the
model. For this reason, we evaluate our model performance
with respect to both its predictive accuracy as well as its
interpretability, the latter of which provides necessary context
to analysts.

For this experiment we obtained a subset of data introduced
in [42], where a domain name was labeled as malicious based
on a crowd-sourced website reputation tool known as the
Web of Trust [2]. We narrowed the sample from [42] by
requiring the domain names to contain at least two tokens
after being segmented, resulting in a labeled sample of 167,179



domain names. These domain names are from the same source
as the cellular data (i.e. “fresh” domain names visited by
customers of a large U.S. telecommunications carrier), but
from a different time period, and having no overlap with the
cellular data sample introduced in Section III.

We split the labeled sample into a training and a test
set, with 80% randomly chosen for training, and where the
baseline rate of maliciousness is 15.7%. We then fit a logistic
regression model with a lasso penalty to various combinations
of feature sets, resulting in a total of eleven models, numbered
M1, M2, ..., M11. The first seven models (M1 - M7) are the
same baseline models that were previously fit in [42]. These
models include combinations of the following five feature
sets: (1) basic characteristics of domain names such as length,
the presence of hyphens and digits, etc., (2) indicators for
individual characters, (3) the TLD, (4) the likelihood of the se-
quence of characters based on a character-level Markov model
trained on external data, and (5) the individual words resulting
from segmentation. We then construct three new models M8
- M10, which are the best-performing models whose features
include only the topics learned from SKM, LDA and BTM,
respectively. The best performer for each of these three types
of models was chosen by selecting the model with the highest
AUC among those fit with K = 50, 100, 250, 500 topics.
Finally, M11 uses the feature set chosen from the best model
among M8 - M10, along with all feature sets in M7. We are
especially interested to see whether M11 results in a higher
AUC than M7, and also if the fit of M11 is more interpretable
than the fit of M7, indicating that using topics as features is
advantageous.

We computed the misclassification rate (MCR) based on a
naive threshold of 0.5 and the AUC on the test set for each
model. We also measured the number of nonzero features
estimated by the lasso-penalized logistic regression in each
model. Table VII summarizes the fits of the eleven models.
Among models M1-M7, model M7 performs the best, with an
AUC of 0.797; it was also the best model in the experiments
in [42] (recall that although the models are the same, the
data here is a subset of the previously analyzed data, thus,
the results could have been different). Among models M8 -
M10, the model using 50 BTM topics (M10) provided the
best performance, with an AUC 5% larger than the worst
of these three models, the 500-topic SKM (M8), and using
only 23 features compared to 369 for M8. Overall the AUC
values were lower for M8 - M10 compared to M5, whose
feature sets contained individual words, showing that by using
topics instead of words (i.e. reducing the dimensionality of the
feature set), one loses some predictive accuracy in exchange
for a smaller, more interpretable model, with several thousand
fewer nonzero features.

In the presence of all the basic feature sets, including
individual words, however, adding topics as features results
in a slight improvement in predictive accuracy: the AUC for
M11 is 0.5% larger than for M7 (80.2% vs. 79.7%). This
difference is not statistically significant, according to [9], but
it is encouraging, and we plan to conduct further research

TABLE VII
SUMMARY OF 11 MODEL FITS TO UNFILTERED CELLULAR DATA, WHERE
|F | DENOTES THE NUMBER OF FEATURES, AND “# 6= 0” DENOTES THE

NUMBER OF NONZERO FEATURES

Feature sets MCR AUC |F | # 6= 0
1 Basics 0.156 0.566 22 14
2 Characters 0.154 0.584 36 23
3 TLD 0.152 0.638 338 23
4 Log-likelihood 0.156 0.547 22 9
5 Words 0.132 0.761 30401 6538
6 M1+M2+M3+M4 0.147 0.686 418 110
7 M6 + Words 0.125 0.797 30819 5551
8 SKM (K = 500) 0.154 0.665 500 369
9 LDA (K = 100) 0.150 0.673 100 77

10 BTM (K = 50) 0.148 0.717 50 23
11 BTM (K = 50) + M7 0.125 0.802 30869 4262

to assess the predictive improvement provided by topics in
similar settings.

The biggest advantage to including topics as features in our
malicious domain detection model is increased interpretability.
Of the 50 BTM topics included as features in M11, 36
were selected by the lasso regularization as nonzero, and
more importantly, the number of individual words selected
as nonzero features was reduced from 5,443 in model M7
to 4,138 in model M11, requiring the interpretation of over
1,300 fewer features. As can be seen in Table VIII, the topics
that are most and least associated with malicious domains are
highly interpretable, and are, of course, learned automatically,
rather than manually constructed as they were in [42]. The top
four most malicious topics are related to discount shoes, adult
content, financial scams, and drug/pharmaceutical offerings,
respectively, which are all very well-known phishing strategies
[22], [24]. Note that these topics were learned automatically
in an upsupervised fashion, and are easily interpreted by
reviewing just the top-6 words within each topic. The most be-
nign topics are related to municipalities, geographical features
(often associated with golf courses, real estate offerings, and
campgrounds), personal photography websites, and churches.

TABLE VIII
THE SIX MOST RELEVANT TERMS FOR THE FIVE MOST MALICIOUS AND

FIVE MOST BENIGN TOPICS

Topic Keywords
Most Malicious

26 sale, cheap, shoes, nike, outlet, 2014
27 sex, porn, tube, teen, girls, gay
33 payday, loan, credit, loans, cash, hour
35 top, online, best, viagra, 24, buy
12 my, free, 2, the, 4, web

Most Benign
7 county, of, city, chamber, society, hospital

50 creek, inn, lake, mountain, farm, river
25 club, north, coast, west, golf, lakes
37 and, photography, david, dr, photo, by
21 st, saint, parish, mary, marys, johns

VIII. FUTURE WORK

In this paper, we’ve demonstrated the effectiveness of topic
models for domain names on two different data sets. In both



cases we found that topic models can reveal meaningful and
interpretable topics for domain names despite the short length
of each document, and that these topics capture meaningful
patterns in domain names that would be difficult to identify
from low-level characteristics such as keyword frequencies in
isolation. In a comparative study, we found that the Biterm
Topic Model provided more semantically coherent topics than
spherical k-means clustering or LDA. We also found that in-
cluding topics as features in a supervised learning application
increased the interpretability of the model with no decrease in
predictive accuracy.

Future work includes investigating the effectiveness of dy-
namic topic models for event detection on new domain name
registration data (possibly over a long time span), and further
studying the use of topics as features in supervised learning
problems for malicious site detection, and other supervised
learning tasks.
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